Today: Sep 20, 2024

Moon-forming impactor as a supply of Earth’s basal mantle anomalies – Nature

Moon-forming impactor as a supply of Earth’s basal mantle anomalies – Nature
November 1, 2023



Garnero, E. J., McNamara, A. Okay. & Shim, S. H. Continent-sized anomalous zones with low seismic pace on the base of Earth’s mantle. Nat. Geosci. 9, 481–489 (2016).Article 
CAS 

Google Student 
Labrosse, S., Hernlund, J. W. & Coltice, N. A crystallizing dense magma ocean on the base of the Earth’s mantle. Nature 450, 866–869 (2007).Article 
CAS 
PubMed 

Google Student 
Canup, R. M. & Asphaug, E. Foundation of the Moon in an enormous impression close to the top of the Earth’s formation. Nature 412, 708–712 (2001).Article 
CAS 
PubMed 

Google Student 
Kokubo, E. & Ida, S. Orbital evolution of protoplanets embedded in a swarm of planetesimals. Icarus 114, 247–257 (1995).Article 

Google Student 
Cameron, A. G. W. & Ward, W. R. The foundation of the Moon. Abstr. Lunar Planet. Sci. Conf. 7, 120–122 (1976).
Google Student 
Ringwood, A. E. Risky and siderophile component geochemistry of the Moon: a reappraisal. Earth Planet. Sci. Lett. 111, 537–555 (1992).Article 
CAS 

Google Student 
Nie, N. X. & Dauphas, N. Vapor drainage within the protolunar disk because the reason for the depletion in risky parts of the Moon. Astrophys. J. 884, L48 (2019).Article 
CAS 

Google Student 
Lee, C. T. A. et al. Upside-down differentiation and technology of a primordial decrease mantle. Nature 463, 930–933 (2010).Article 
CAS 
PubMed 

Google Student 
Christensen, U. R. & Hofmann, A. W. Segregation of subducted oceanic crust within the convecting mantle. J. Geophys. Res. 99, 19867–19884 (1994).Article 
CAS 

Google Student 
Williams, C. D., Mukhopadhyay, S., Rudolph, M. L. & Romanowicz, B. Primitive helium is sourced from seismically sluggish areas within the lowermost mantle. Geochem. Geophys. Geosyst. 20, 4130–4145 (2019).Article 
CAS 

Google Student 
Mukhopadhyay, S. Early differentiation and risky accretion recorded in deep-mantle neon and xenon. Nature 486, 101–104 (2012).Article 
CAS 
PubMed 

Google Student 
Desch, S. J. & Robinson, Okay. L. A unified fashion for hydrogen within the Earth and Moon: nobody expects the Theia contribution. Chemie der Erde 79, 125546 (2019).Article 

Google Student 
Pepin, R. O. & Porcelli, D. Foundation of noble gases within the terrestrial planets. Rev. Mineral. Geochem. 47, 191–246 (2002).Article 
CAS 

Google Student 
Burke, Okay., Steinberger, B., Torsvik, T. H. & Smethurst, M. A. Plume technology zones on the margins of enormous low shear pace provinces at the core–mantle boundary. Earth Planet. Sci. Lett. 265, 49–60 (2008).Article 
CAS 

Google Student 
Will, P., Busemann, H., Riebe, M. E. I. & Maden, C. Indigenous noble gases within the Moon’s inside. Sci. Adv. 8, 1–9 (2022).Article 

Google Student 
Stewart, S. et al. The surprise physics of huge affects: key necessities for the equations of state. AIP Conf. Proc. 2272, 080003 (2020).Article 

Google Student 
Kegerreis, J. A., Eke, V. R., Massey, R. J., Sandnes, T. D. & Teodoro, L. F. A. Quick foundation of the Moon as a post-impact satellite tv for pc. Astrophys. J. Lett. 937, L40 (2022).Article 

Google Student 
Deng, H. et al. Enhanced blending in Large Have an effect on simulations with a brand new Lagrangian approach. Astrophys. J. 870, 127 (2019).Article 
CAS 

Google Student 
Deng, H. et al. Primordial Earth mantle heterogeneity brought about by means of the Moon-forming Large Have an effect on? Astrophys. J. 887, 211 (2019).Article 
CAS 

Google Student 
Cottaar, S. & Lekic, V. Morphology of seismically sluggish lower-mantle buildings. Geophys. J. Int. 207, 1122–1136 (2016).Article 

Google Student 
Kegerreis, J. A. et al. Planetary massive affects: convergence of high-resolution simulations the usage of environment friendly round preliminary stipulations and SWIFT. Mon. No longer. R. Astron. Soc. 487, 5029–5040 (2019).Article 
CAS 

Google Student 
Deguen, R., Landeau, M. & Olson, P. Turbulent steel–silicate blending, fragmentation, and equilibration in magma oceans. Earth Planet. Sci. Lett. 391, 274–287 (2014).Article 
CAS 

Google Student 
Dauphas, N., Burkhardt, C., Warren, P. H. & Fang-Zhen, T. Geochemical arguments for an Earth-like Moon-forming impactor. Philos. Trans. R. Soc. A 372, 20130244 (2014).Article 

Google Student 
Pahlevan, Okay., Stevenson, D. J. & Eiler, J. M. Chemical fractionation within the silicate vapor surroundings of the Earth. Earth Planet. Sci. Lett. 301, 433–443 (2011).Article 
CAS 

Google Student 
Meier, M. M. M., Reufer, A. & Wieler, R. At the foundation and composition of Theia: constraints from new fashions of the Large Have an effect on. Icarus 242, 316–328 (2014).Article 
CAS 

Google Student 
Robinson, Okay. L. et al. Water in developed lunar rocks: proof for a couple of reservoirs. Geochim. Cosmochim. Acta 188, 244–260 (2016).Article 
CAS 

Google Student 
Connolly, J. A. D. Computation of segment equilibria by means of linear programming: a device for geodynamic modeling and its utility to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005).Article 
CAS 

Google Student 
Connolly, J. A. D. The geodynamic equation of state: what and the way. Geochem. Geophys. Geosyst. 10, 1–19 (2009).Article 

Google Student 
Stixrude, L. & Lithgow-Bertelloni, C. Thermodynamics of mantle minerals – II. Segment equilibria. Geophys. J. Int. 184, 1180–1213 (2011).Article 
CAS 

Google Student 
Nakajima, M. & Stevenson, D. J. Melting and combining states of the Earth’s mantle after the Moon-forming impression. Earth Planet. Sci. Lett. 427, 286–295 (2015).Article 
CAS 

Google Student 
Gurnis, M. The consequences of chemical density variations on convective blending within the Earth’s mantle. J. Geophys. Res., Forged Earth 91, 11407–11419 (1986).Article 

Google Student 
Tackley, P. J. in The Core‐Mantle Boundary Area (eds Gurnis, M., Wysession, M. E., Knittle, E. & Buffet, B. A.) 231–253 (American Geophysical Union, 1998).Nakagawa, T., Tackley, P. J., Deschamps, F. & Connolly, J. A. D. The affect of MORB and harzburgite composition on thermo-chemical mantle convection in a three-D round shell with self-consistently calculated mineral physics. Earth Planet. Sci. Lett. 296, 403–412 (2010).Article 
CAS 

Google Student 
Gu, T., Li, M., McCammon, C. & Lee, Okay. Okay. M. Redox-induced decrease mantle density distinction and impact on mantle construction and primitive oxygen. Nat. Geosci. 9, 723–727 (2016).Article 
CAS 

Google Student 
Yuan, Q. & Li, M. Instability of the African huge low-shear-wave-velocity province because of its low intrinsic density. Nat. Geosci. 15, 334–339 (2022).Article 
CAS 

Google Student 
McNamara, A. Okay. & Zhong, S. Thermochemical buildings underneath Africa and the Pacific Ocean. Nature 437, 1136–1139 (2005).Article 
CAS 
PubMed 

Google Student 
O’Neill, C., Marchi, S., Zhang, S. & Bottke, W. Have an effect on-driven subduction at the Hadean Earth. Nat. Geosci. 10, 793–797 (2017).Article 

Google Student 
Hernlund, J. W. & Houser, C. At the statistical distribution of seismic velocities in Earth’s deep mantle. Earth Planet. Sci. Lett. 265, 423–437 (2008).Article 
CAS 

Google Student 
Lei, W. et al. International adjoint tomography – fashion GLAD-M25. Geophys. J. Int. 223, 1–21 (2020).Article 

Google Student 
Elkins-Tanton, L. T. Magma oceans within the interior Sun Machine. Annu. Rev. Earth Planet. Sci. 40, 113–139 (2012).Article 
CAS 

Google Student 
Abe, Y. Thermal and chemical evolution of the terrestrial magma ocean. Phys. Earth Planet. Inter. 1, 27–39 (1997).Article 

Google Student 
Solomatov, V. S. in Treatise on Geophysics 1st edn, Vol. 9 (ed. Schubert, G.) 91–119 (Elsevier, 2007).Maurice, M. et al. Onset of solid-state mantle convection and combining all the way through magma ocean solidification. J. Geophys. Res., Planets 122, 577–598 (2017).Article 

Google Student 
Boukaré, C. E., Parmentier, E. M. & Parman, S. W. Timing of mantle overturn all the way through magma ocean solidification. Earth Planet. Sci. Lett. 491, 216–225 (2018).Article 

Google Student 
Labrosse, S., Morison, A., Deguen, R. & Alboussière, T. Rayleigh–Bénard convection in a creeping stable with melting and freezing at both or each its horizontal barriers. J. Fluid Mech. 846, 5–36 (2018).Article 
MathSciNet 
CAS 
MATH 

Google Student 
Agrusta, R. et al. Mantle convection interacting with magma oceans. Geophys. J. Int. 220, 1878–1892 (2020).Article 
CAS 

Google Student 
Morison, A., Labrosse, S., Deguen, R. & Alboussière, T. Timescale of overturn in a magma ocean cumulate. Earth Planet. Sci. Lett. 516, 25–36 (2019).Article 
CAS 

Google Student 
Becker, T. W., Kellogg, J. B. & O’Connell, R. J. Thermal constraints at the survival of primitive blobs within the decrease mantle. Earth Planet. Sci. Lett. 171, 351–365 (1999).Article 
CAS 

Google Student 
Lock, S. J., Bermingham, Okay. R., Parai, R. & Boyet, M. Geochemical constraints at the foundation of the Moon and preservation of historic terrestrial heterogeneities. Area Sci. Rev. 216, 1–46 (2020).Article 

Google Student 
Ballmer, M. D., Lourenço, D. L., Hirose, Okay., Caracas, R. & Nomura, R. Reconciling magma-ocean crystallization fashions with the present-day construction of the Earth’s mantle. Geochem. Geophys. Geosyst. 18, 2785–2806 (2017).Article 
CAS 

Google Student 
Maas, C. & Hansen, U. Dynamics of a terrestrial magma ocean below planetary rotation: a learn about in round geometry. Earth Planet. Sci. Lett. 513, 81–94 (2019).Article 
CAS 

Google Student 
Williams, C. D. & Mukhopadhyay, S. Seize of nebular gases all the way through Earth’s accretion is preserved in deep-mantle neon. Nature 565, 78–81 (2019).Article 
CAS 
PubMed 

Google Student 
Mundl-Petermeier, A. et al. Temporal evolution of primordial tungsten-182 and 3He/4He signatures within the Iceland mantle plume. Chem. Geol. 525, 245–259 (2019).Article 
CAS 

Google Student 
Li, M., McNamara, A. Okay. & Garnero, E. J. Chemical complexity of hotspots brought about by means of biking oceanic crust via mantle reservoirs. Nat. Geosci. 7, 366–370 (2014).Article 
CAS 

Google Student 
Mulyukova, E., Steinberger, B., Dabrowski, M. & Sobolev, S. V. Survival of LLSVPs for billions of years in a vigorously convecting mantle: replenishment and destruction of chemical anomaly. J. Geophys. Res., Forged Earth 120, 3824–3847 (2015).Article 

Google Student 
Jackson, M. G. et al. Historic helium and tungsten isotopic signatures preserved in mantle domain names least changed by means of crustal recycling. Proc. Natl Acad. Sci. USA 117, 30993–31001 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Student 
Brown, J. M. & Shankland, T. J. Thermodynamic parameters within the Earth as made up our minds from seismic profiles. Geophys. J. R. Astron. Soc. 66, 579–596 (1981).Article 
MATH 

Google Student 
Stacey, F. D. A thermal fashion of the earth. Phys. Earth Planet. Inter. 15, 341–348 (1977).Article 

Google Student 
Canup, R. M., Barr, A. C. & Crawford, D. A. Lunar-forming affects: high-resolution SPH and AMR-CTH simulations. Icarus 222, 200–219 (2013).Article 

Google Student 
Hosono, N., Saitoh, T. R., Makino, J., Genda, H. & Ida, S. The Large Have an effect on simulations with density impartial smoothed particle hydrodynamics. Icarus 271, 131–157 (2016).Article 

Google Student 
Reinhardt, C. & Stadel, J. Numerical sides of Large Have an effect on simulations. Mon. No longer. R. Astron. Soc. 467, 4252–4263 (2017).Article 

Google Student 
Ruiz-Bonilla, S. et al. Coping with density discontinuities in planetary SPH simulations. Mon. No longer. R. Astron. Soc. 512, 4660–4668 (2022).Article 
CAS 

Google Student 
Hosono, N. & Karato, S. The affect of equation of state at the Large Have an effect on simulations. J. Geophys. Res., Planets 127, 1–18 (2022).Article 

Google Student 
Hosono, N. et al. Unconvergence of very-large-scale Large Have an effect on simulations. Publ. Astron. Soc. Jpn 69, 1–11 (2017).Article 

Google Student 
Meier, T., Reinhardt, C. & Stadel, J. G. The EOS/decision conspiracy: convergence in proto-planetary collision simulations. Mon. No longer. R. Astron. Soc. 1816, 1806–1816 (2021).Article 

Google Student 
Raskin, C. & Owen, J. M. Analyzing the accuracy of astrophysical disk simulations with a generalized hydrodynamical take a look at drawback. Astrophys. J. 831, 26 (2016).Article 

Google Student 
Gabriel, T. S. J. & Allen-Sutter, H. Dependencies of mantle surprise heating in pairwise accretion. Astrophys. J. Lett. 915, L32 (2021).Article 

Google Student 
Frontiere, N., Raskin, C. D. & Owen, J. M. CRKSPH – a conservative reproducing kernel smoothed particle hydrodynamics scheme. J. Comput. Phys. 332, 160–209 (2017).Article 
MathSciNet 
MATH 

Google Student 
Rosswog, S. Astrophysical easy particle hydrodynamics. New Astron. Rev. 53, 78–104 (2009).Article 
CAS 

Google Student 
Schaller, M. et al. SWIFT: SPH with inter-dependent fine-grained tasking. In Astrophysics Supply Code Library, ascl-1805 (2018).Ruiz-Bonilla, S., Eke, V. R., Kegerreis, J. A., Massey, R. J. &Teodoro, L. F. A. The impact of pre-impact spin at the Moon-forming collision. Mon. No longer. R. Astron. Soc. 2870, 2861–2870 (2021).
Google Student 
Canup, R. M. Forming a Moon with an Earth-like composition by means of an enormous impression. Science 338, 1052–1056 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Student 
Hopkins, P. F. A brand new magnificence of correct, mesh-free hydrodynamic simulation strategies. Mon. No longer. R. Astron. Soc. 450, 53–110 (2015).Article 
CAS 

Google Student 
Thompson, S. L. & Lauson, H. S. Enhancements within the Chart D Radiation—Hydrodynamic Code. III. Revised Analytic Equation of State. Sandia Document SC-RR-71 0174 (1972).Melosh, H. J. A hydrocode equation of state for SiO2. Meteorit. Planet. Sci. 42, 2079–2098 (2007).Article 
CAS 

Google Student 
Fiquet, G. et al. Melting of peridotite to 140 gigapascals. Science 329, 1516–1518 (2010).Article 
CAS 
PubMed 

Google Student 
Andrault, D. et al. Solidus and liquidus profiles of chondritic mantle: implication for melting of the Earth throughout its historical past. Earth Planet. Sci. Lett. 304, 251–259 (2011).Article 
CAS 

Google Student 
Abe, Y. in Evolution of the Earth and Planets (eds Takahashi, E., Jeanloz, R. & Rubie, D.) 41–54 (American Geophysical Union, 1993).Miyazaki, Y. & Korenaga, J. At the timescale of magma ocean solidification and its chemical penalties: 2. Compositional differentiation below crystal accumulation and matrix compaction. J. Geophys. Res., Forged Earth 124, 3399–3419 (2019).Article 
CAS 

Google Student 
Nomura, R. et al. Spin crossover and iron-rich silicate soften within the Earth’s deep mantle. Nature 473, 199–202 (2011).Article 
CAS 
PubMed 

Google Student 
Andrault, D. et al. Forged–liquid iron partitioning in Earth’s deep mantle. Nature 487, 354–357 (2012).Article 
CAS 
PubMed 

Google Student 
Moresi, L. N. & Solomatov, V. S. Numerical investigation of 2D convection with extraordinarily huge viscosity permutations. Phys. Fluids 7, 2154–2162 (1995).Article 
MATH 

Google Student 
Farrell, Okay. A. O. & Lowman, J. P. Emulating the thermal construction of round shell convection in plane-layer geometry mantle convection fashions. Phys. Earth Planet. Inter. 182, 73–84 (2010).Article 

Google Student 
Tackley, P. J. & King, S. D. Trying out the tracer ratio approach for modeling energetic compositional fields in mantle convection simulations. Geochem. Geophys. Geosyst. 4, 1–15 (2003).Article 

Google Student 
Schaller, M. et al. Swift: a contemporary highly-parallel gravity and smoothed particle hydrodynamics solver for astrophysical and cosmological packages. Preprint at (2023).Hirth, G. & Kohlstedt, D. L. Water within the oceanic higher mantle: implications for rheology, soften extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996).Article 
CAS 

Google Student 
Dziewonski, A. M. & Anderson, D. L. Initial reference Earth fashion. Phys. Earth Planet. Inter. 25, 297–356 (1981).Article 

Google Student 

OpenAI
Author: OpenAI

Don't Miss

Earth’s outer core would possibly cling a hidden ‘doughnut’

Earth’s outer core would possibly cling a hidden ‘doughnut’

A newly found out “doughnut” in Earth’s core may just affect the
Ukraine’s long-range moves on Russian ammo depots goal to starve its bombing marketing campaign

Ukraine’s long-range moves on Russian ammo depots goal to starve its bombing marketing campaign

Ukrainian long-range drones struck an ammunition depot within Russia this week, triggering