Today: Nov 08, 2024

Dynamic prognosis of metamaterials via laser-induced vibrational signatures – Nature

Dynamic prognosis of metamaterials via laser-induced vibrational signatures – Nature
November 15, 2023



Meza, L. R., Das, S. & Greer, J. R. Robust, light-weight, and recoverable three-d ceramic nanolattices. Science 345, 1322–1326 (2014).Article 
CAS 
PubMed 

Google Student 
Zheng, X. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014).Article 
CAS 
PubMed 

Google Student 
Tancogne-Dejean, T., Diamantopoulou, M., Gorji, M. B., Bonatti, C. & Mohr, D. 3D plate-lattices: an rising magnificence of low-density metamaterial displaying optimum isotropic stiffness. Adv. Mater. 30, 1803334 (2018).Article 

Google Student 
Berger, J. B., Wadley, H. N. & McMeeking, R. M. Mechanical metamaterials on the theoretical restrict of isotropic elastic stiffness. Nature 543, 533–537 (2017).Article 
CAS 
PubMed 

Google Student 
Krödel, S. & Daraio, C. Microlattice metamaterials for tailoring ultrasonic transmission with elastoacoustic hybridization. Phys. Rev. Appl. 6, 064005 (2016).Article 

Google Student 
Frenzel, T., Köpfler, J., Jung, E., Kadic, M. & Wegener, M. Ultrasound experiments on acoustical task in chiral mechanical metamaterials. Nat. Commun. 10, 3384 (2019).Article 
PubMed 
PubMed Central 

Google Student 
Bayat, A. & Gaitanaros, S. Wave directionality in three-d periodic lattices. J. Appl. Mech. 85, 011004 (2017).Article 

Google Student 
Portela, C. M. et al. Supersonic affect resilience of nanoarchitected carbon. Nat. Mater. 20, 1491–1497 (2021).Article 
CAS 
PubMed 

Google Student 
Lai, C. Q. & Daraio, C. Extremely porous microlattices as ultrathin and environment friendly affect absorbers. Int. J. Have an effect on Eng. 120, 138–149 (2018).Article 

Google Student 
Dattelbaum, D. M., Ionita, A., Patterson, B. M., Department, B. A. & Kuettner, L. Shockwave dissipation via interface-dominated porous buildings. AIP Adv. 10, 075016 (2020).Article 
CAS 

Google Student 
Mueller, J., Matlack, Okay. H., Shea, Okay. & Daraio, C. Power absorption houses of periodic and stochastic 3D lattice fabrics. Adv. Concept Simul. 2, 1900081 (2019).Article 

Google Student 
Weeks, J. S. & Ravichandran, G. Top strain-rate compression habits of polymeric rod and plate Kelvin lattice buildings. Mech. Mater. 166, 104216 (2022).Article 

Google Student 
Guo, Y. et al. Minimum surface-based fabrics for topological elastic wave guiding. Adv. Funct. Mater. 32, 2204122 (2022).Article 
CAS 

Google Student 
Matlack, Okay. H., Bauhofer, A., Krödel, S., Palermo, A. & Daraio, C. Composite 3D-printed metastructures for low-frequency and broadband vibration absorption. Proc. Natl Acad. Sci. 113, 8386–8390 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Student 
Hussein, M. I. & Frazier, M. J. Metadamping: an emergent phenomenon in dissipative metamaterials. J. Sound Vib. 332, 4767–4774 (2013).Article 

Google Student 
Hawreliak, J. A. et al. Dynamic habits of engineered lattice fabrics. Sci. Rep. 6, 28094 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Student 
Lind, J., Robinson, A. Okay. & Kumar, M. Perception into the coordinated jetting habits in periodic lattice buildings beneath dynamic compression. J. Appl. Phys. 128, 015901 (2020).Article 
CAS 

Google Student 
Criminal, C. et al. Plate-nanolattices on the theoretical restrict of stiffness and power. Nat. Commun. 11, 1579 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Student 
Bauer, J., Schroer, A., Schwaiger, R. & Kraft, O. Coming near theoretical power in glassy carbon nanolattices. Nat. Mater. 15, 438–443 (2016).Article 
CAS 
PubMed 

Google Student 
Meza, L. R. et al. Resilient 3D hierarchical architected metamaterials. Proc. Natl Acad. Sci. USA 112, 11502–11507 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Student 
Portela, C. M. et al. Excessive mechanical resilience of self-assembled nanolabyrinthine fabrics. Proc. Natl Acad. Sci. 117, 5686–5693 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Student 
Guell Izard, A., Bauer, J., Criminal, C., Turlo, V. & Valdevit, L. Ultrahigh power absorption multifunctional spinodal nanoarchitectures. Small 15, 1903834 (2019).Article 
CAS 

Google Student 
Babaee, S. et al. 3D cushy metamaterials with unfavorable Poisson’s ratio. Adv. Mater. 25, 5044–5049 (2013).Article 
CAS 
PubMed 

Google Student 
Farzaneh, A., Pawar, N., Portela, C. M. & Hopkins, J. B. Sequential metamaterials with alternating Poisson’s ratios. Nat. Commun. 13, 1041 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Student 
Jin, L. et al. Guided transition waves in multistable mechanical metamaterials. Proc. Natl Acad. Sci. USA 117, 2319–2325 (2020).Article 
MathSciNet 
CAS 
PubMed 
PubMed Central 
MATH 

Google Student 
Baravelli, E. & Ruzzene, M. Internally resonating lattices for bandgap technology and low-frequency vibration regulate. J. Sound Vib. 332, 6562–6579 (2013).Article 

Google Student 
Iglesias Martínez, J. A. et al. Experimental statement of roton-like dispersion family members in metamaterials. Sci. Adv. 7, eabm2189 (2021).Article 
PubMed 
PubMed Central 

Google Student 
Meza, L. R. et al. Reexamining the mechanical assets area of three-d lattice architectures. Acta Mater. 140, 424–432 (2017).Article 
CAS 

Google Student 
Lind, J., Jensen, B. J., Barham, M. & Kumar, M. In situ dynamic compression wave habits in additively manufactured lattice fabrics. J. Mater. Res. 34, 2–19 (2019).Article 
CAS 

Google Student 
Deshpande, V. S., Fleck, N. A. & Ashby, M. F. Efficient houses of the octet-truss lattice subject matter. J. Mech. Phys. Solids 49, 1747–1769 (2001).Article 
CAS 
MATH 

Google Student 
Bastek, J.-H., Kumar, S., Telgen, B., Glaesener, R. N. & Kochmann, D. M. Inverting the construction–assets map of truss metamaterials via deep finding out. Proc. Natl Acad. Sci. 119, e2111505119 (2022).Article 
CAS 
PubMed 

Google Student 
Weeks, J. S., Gandhi, V. & Ravichandran, G. Surprise compression habits of stainless-steel 316L octet-truss lattice buildings. Int. J. Have an effect on Eng. 169, 104324 (2022).Article 

Google Student 
Tancogne-Dejean, T., Spierings, A. B. & Mohr, D. Additively-manufactured steel micro-lattice fabrics for top explicit power absorption beneath static and dynamic loading. Acta Mater. 116, 14–28 (2016).Article 
CAS 

Google Student 
Gongora, A. E. et al. Designing lattices for affect coverage the usage of switch finding out. Subject 5, 2829–2846 (2022).Article 

Google Student 
Mao, Y., He, Q. & Zhao, X. Designing complicated architectured fabrics with generative antagonistic networks. Sci. Adv. 6, eaaz4169 (2020).Article 
PubMed 
PubMed Central 

Google Student 
Abi Ghanem, M. et al. Longitudinal eigenvibration of multilayer colloidal crystals and the impact of nanoscale touch bridges. Nanoscale 11, 5655–5665 (2019).Article 
CAS 
PubMed 

Google Student 
Akimov, A., Younger, E., Sharp, J., Gusev, V. & Kent, A. Coherent hypersonic closed-pipe organ like modes in supported polymer movies. Appl. Phys. Lett. 99, 021912 (2011).Article 

Google Student 
Dryburgh, P. et al. Dimension of the only crystal elasticity matrix of polycrystalline fabrics. Acta Mater. 225, 117551 (2022).Article 
CAS 

Google Student 
Rohbeck, N. et al. Impact of top stress charges and temperature at the micromechanical houses of 3D-printed polymer buildings made via two-photon lithography. Mater. Des. 195, 108977 (2020).Article 
CAS 

Google Student 
Salari-Sharif, L. et al. Damping of selectively bonded 3D woven lattice fabrics. Sci. Rep. 8, 14572 (2018).Article 
PubMed 
PubMed Central 

Google Student 
Pouet, B. F. & Rasolofosaon, N. J. P. Dimension of broadband intrinsic ultrasonic attenuation and dispersion in solids with laser ways. J. Acoust. Soc. Am. 93, 1286–1292 (1993).Article 

Google Student 
Garrett, S. L. Working out Acoustics: An Experimentalist’s View of Sound and Vibration (Springer, 2020).Szabo, T. L. Time area wave equations for lossy media obeying a frequency energy legislation. J. Acoust. Soc. Am. 96, 491–500 (1994).Article 

Google Student 
Szabo, T. L. & Wu, J. A fashion for longitudinal and shear wave propagation in viscoelastic media. J. Acoust. Soc. Am. 107, 2437–2446 (2000).Article 
CAS 
PubMed 

Google Student 
Patil, G. U. & Matlack, Okay. H. Efficient assets analysis and research of three-d periodic lattices and composites via Bloch-wave homogenization. J. Acoust. Soc. Am. 145, 1259–1269 (2019).Article 
CAS 
PubMed 

Google Student 
Graff, Okay. F. Wave Movement in Elastic Solids (Dover Publications, 2012).Gross, A., Pantidis, P., Bertoldi, Okay. & Gerasimidis, S. Correlation between topology and elastic houses of imperfect truss-lattice fabrics. J. Mech. Phys. Solids 124, 577–598 (2019).Article 

Google Student 
Liu, L., Kamm, P., García-Moreno, F., Banhart, J. & Pasini, D. Elastic and failure reaction of imperfect three-d steel lattices: the position of geometric defects prompted via Selective Laser Melting. J. Mech. Phys. Solids 107, 160–184 (2017).Article 
MathSciNet 

Google Student 
Glaesener, R. et al. Predicting the affect of geometric imperfections at the mechanical reaction of 2D and 3D periodic trusses. Acta Mater. 254, 118918 (2023).Article 
CAS 

Google Student 
Wang, C. et al. Bioadhesive ultrasound for long-term steady imaging of numerous organs. Science 377, 517–523 (2022).Article 
CAS 
PubMed 

Google Student 

OpenAI
Author: OpenAI

Don't Miss

Astrophysicists use echoes of sunshine to remove darkness from black holes

Astrophysicists use echoes of sunshine to remove darkness from black holes

Because of gravitational lensing, the photons from a unmarried flash of sunshine
Scientists to find ‘massive’ dinosaur spider fossil in Australia

Scientists to find ‘massive’ dinosaur spider fossil in Australia

In case you concept Australia’s spiders had been horrifying, wait till you