Meza, L. R., Das, S. & Greer, J. R. Robust, light-weight, and recoverable three-d ceramic nanolattices. Science 345, 1322–1326 (2014).Article
CAS
PubMed
Google Student
Zheng, X. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014).Article
CAS
PubMed
Google Student
Tancogne-Dejean, T., Diamantopoulou, M., Gorji, M. B., Bonatti, C. & Mohr, D. 3D plate-lattices: an rising magnificence of low-density metamaterial displaying optimum isotropic stiffness. Adv. Mater. 30, 1803334 (2018).Article
Google Student
Berger, J. B., Wadley, H. N. & McMeeking, R. M. Mechanical metamaterials on the theoretical restrict of isotropic elastic stiffness. Nature 543, 533–537 (2017).Article
CAS
PubMed
Google Student
Krödel, S. & Daraio, C. Microlattice metamaterials for tailoring ultrasonic transmission with elastoacoustic hybridization. Phys. Rev. Appl. 6, 064005 (2016).Article
Google Student
Frenzel, T., Köpfler, J., Jung, E., Kadic, M. & Wegener, M. Ultrasound experiments on acoustical task in chiral mechanical metamaterials. Nat. Commun. 10, 3384 (2019).Article
PubMed
PubMed Central
Google Student
Bayat, A. & Gaitanaros, S. Wave directionality in three-d periodic lattices. J. Appl. Mech. 85, 011004 (2017).Article
Google Student
Portela, C. M. et al. Supersonic affect resilience of nanoarchitected carbon. Nat. Mater. 20, 1491–1497 (2021).Article
CAS
PubMed
Google Student
Lai, C. Q. & Daraio, C. Extremely porous microlattices as ultrathin and environment friendly affect absorbers. Int. J. Have an effect on Eng. 120, 138–149 (2018).Article
Google Student
Dattelbaum, D. M., Ionita, A., Patterson, B. M., Department, B. A. & Kuettner, L. Shockwave dissipation via interface-dominated porous buildings. AIP Adv. 10, 075016 (2020).Article
CAS
Google Student
Mueller, J., Matlack, Okay. H., Shea, Okay. & Daraio, C. Power absorption houses of periodic and stochastic 3D lattice fabrics. Adv. Concept Simul. 2, 1900081 (2019).Article
Google Student
Weeks, J. S. & Ravichandran, G. Top strain-rate compression habits of polymeric rod and plate Kelvin lattice buildings. Mech. Mater. 166, 104216 (2022).Article
Google Student
Guo, Y. et al. Minimum surface-based fabrics for topological elastic wave guiding. Adv. Funct. Mater. 32, 2204122 (2022).Article
CAS
Google Student
Matlack, Okay. H., Bauhofer, A., Krödel, S., Palermo, A. & Daraio, C. Composite 3D-printed metastructures for low-frequency and broadband vibration absorption. Proc. Natl Acad. Sci. 113, 8386–8390 (2016).Article
CAS
PubMed
PubMed Central
Google Student
Hussein, M. I. & Frazier, M. J. Metadamping: an emergent phenomenon in dissipative metamaterials. J. Sound Vib. 332, 4767–4774 (2013).Article
Google Student
Hawreliak, J. A. et al. Dynamic habits of engineered lattice fabrics. Sci. Rep. 6, 28094 (2016).Article
CAS
PubMed
PubMed Central
Google Student
Lind, J., Robinson, A. Okay. & Kumar, M. Perception into the coordinated jetting habits in periodic lattice buildings beneath dynamic compression. J. Appl. Phys. 128, 015901 (2020).Article
CAS
Google Student
Criminal, C. et al. Plate-nanolattices on the theoretical restrict of stiffness and power. Nat. Commun. 11, 1579 (2020).Article
CAS
PubMed
PubMed Central
Google Student
Bauer, J., Schroer, A., Schwaiger, R. & Kraft, O. Coming near theoretical power in glassy carbon nanolattices. Nat. Mater. 15, 438–443 (2016).Article
CAS
PubMed
Google Student
Meza, L. R. et al. Resilient 3D hierarchical architected metamaterials. Proc. Natl Acad. Sci. USA 112, 11502–11507 (2015).Article
CAS
PubMed
PubMed Central
Google Student
Portela, C. M. et al. Excessive mechanical resilience of self-assembled nanolabyrinthine fabrics. Proc. Natl Acad. Sci. 117, 5686–5693 (2020).Article
CAS
PubMed
PubMed Central
Google Student
Guell Izard, A., Bauer, J., Criminal, C., Turlo, V. & Valdevit, L. Ultrahigh power absorption multifunctional spinodal nanoarchitectures. Small 15, 1903834 (2019).Article
CAS
Google Student
Babaee, S. et al. 3D cushy metamaterials with unfavorable Poisson’s ratio. Adv. Mater. 25, 5044–5049 (2013).Article
CAS
PubMed
Google Student
Farzaneh, A., Pawar, N., Portela, C. M. & Hopkins, J. B. Sequential metamaterials with alternating Poisson’s ratios. Nat. Commun. 13, 1041 (2022).Article
CAS
PubMed
PubMed Central
Google Student
Jin, L. et al. Guided transition waves in multistable mechanical metamaterials. Proc. Natl Acad. Sci. USA 117, 2319–2325 (2020).Article
MathSciNet
CAS
PubMed
PubMed Central
MATH
Google Student
Baravelli, E. & Ruzzene, M. Internally resonating lattices for bandgap technology and low-frequency vibration regulate. J. Sound Vib. 332, 6562–6579 (2013).Article
Google Student
Iglesias Martínez, J. A. et al. Experimental statement of roton-like dispersion family members in metamaterials. Sci. Adv. 7, eabm2189 (2021).Article
PubMed
PubMed Central
Google Student
Meza, L. R. et al. Reexamining the mechanical assets area of three-d lattice architectures. Acta Mater. 140, 424–432 (2017).Article
CAS
Google Student
Lind, J., Jensen, B. J., Barham, M. & Kumar, M. In situ dynamic compression wave habits in additively manufactured lattice fabrics. J. Mater. Res. 34, 2–19 (2019).Article
CAS
Google Student
Deshpande, V. S., Fleck, N. A. & Ashby, M. F. Efficient houses of the octet-truss lattice subject matter. J. Mech. Phys. Solids 49, 1747–1769 (2001).Article
CAS
MATH
Google Student
Bastek, J.-H., Kumar, S., Telgen, B., Glaesener, R. N. & Kochmann, D. M. Inverting the construction–assets map of truss metamaterials via deep finding out. Proc. Natl Acad. Sci. 119, e2111505119 (2022).Article
CAS
PubMed
Google Student
Weeks, J. S., Gandhi, V. & Ravichandran, G. Surprise compression habits of stainless-steel 316L octet-truss lattice buildings. Int. J. Have an effect on Eng. 169, 104324 (2022).Article
Google Student
Tancogne-Dejean, T., Spierings, A. B. & Mohr, D. Additively-manufactured steel micro-lattice fabrics for top explicit power absorption beneath static and dynamic loading. Acta Mater. 116, 14–28 (2016).Article
CAS
Google Student
Gongora, A. E. et al. Designing lattices for affect coverage the usage of switch finding out. Subject 5, 2829–2846 (2022).Article
Google Student
Mao, Y., He, Q. & Zhao, X. Designing complicated architectured fabrics with generative antagonistic networks. Sci. Adv. 6, eaaz4169 (2020).Article
PubMed
PubMed Central
Google Student
Abi Ghanem, M. et al. Longitudinal eigenvibration of multilayer colloidal crystals and the impact of nanoscale touch bridges. Nanoscale 11, 5655–5665 (2019).Article
CAS
PubMed
Google Student
Akimov, A., Younger, E., Sharp, J., Gusev, V. & Kent, A. Coherent hypersonic closed-pipe organ like modes in supported polymer movies. Appl. Phys. Lett. 99, 021912 (2011).Article
Google Student
Dryburgh, P. et al. Dimension of the only crystal elasticity matrix of polycrystalline fabrics. Acta Mater. 225, 117551 (2022).Article
CAS
Google Student
Rohbeck, N. et al. Impact of top stress charges and temperature at the micromechanical houses of 3D-printed polymer buildings made via two-photon lithography. Mater. Des. 195, 108977 (2020).Article
CAS
Google Student
Salari-Sharif, L. et al. Damping of selectively bonded 3D woven lattice fabrics. Sci. Rep. 8, 14572 (2018).Article
PubMed
PubMed Central
Google Student
Pouet, B. F. & Rasolofosaon, N. J. P. Dimension of broadband intrinsic ultrasonic attenuation and dispersion in solids with laser ways. J. Acoust. Soc. Am. 93, 1286–1292 (1993).Article
Google Student
Garrett, S. L. Working out Acoustics: An Experimentalist’s View of Sound and Vibration (Springer, 2020).Szabo, T. L. Time area wave equations for lossy media obeying a frequency energy legislation. J. Acoust. Soc. Am. 96, 491–500 (1994).Article
Google Student
Szabo, T. L. & Wu, J. A fashion for longitudinal and shear wave propagation in viscoelastic media. J. Acoust. Soc. Am. 107, 2437–2446 (2000).Article
CAS
PubMed
Google Student
Patil, G. U. & Matlack, Okay. H. Efficient assets analysis and research of three-d periodic lattices and composites via Bloch-wave homogenization. J. Acoust. Soc. Am. 145, 1259–1269 (2019).Article
CAS
PubMed
Google Student
Graff, Okay. F. Wave Movement in Elastic Solids (Dover Publications, 2012).Gross, A., Pantidis, P., Bertoldi, Okay. & Gerasimidis, S. Correlation between topology and elastic houses of imperfect truss-lattice fabrics. J. Mech. Phys. Solids 124, 577–598 (2019).Article
Google Student
Liu, L., Kamm, P., García-Moreno, F., Banhart, J. & Pasini, D. Elastic and failure reaction of imperfect three-d steel lattices: the position of geometric defects prompted via Selective Laser Melting. J. Mech. Phys. Solids 107, 160–184 (2017).Article
MathSciNet
Google Student
Glaesener, R. et al. Predicting the affect of geometric imperfections at the mechanical reaction of 2D and 3D periodic trusses. Acta Mater. 254, 118918 (2023).Article
CAS
Google Student
Wang, C. et al. Bioadhesive ultrasound for long-term steady imaging of numerous organs. Science 377, 517–523 (2022).Article
CAS
PubMed
Google Student