Today: Nov 08, 2024

A large therian mammal from the Late Cretaceous of South America – Scientific Reports

A large therian mammal from the Late Cretaceous of South America – Scientific Reports
February 5, 2024

## A large therian mammal from the Late Cretaceous of South America – Scientific Reports

Bakker, R. T. Dinosaur physiology and the origin of mammals. Evolution 25, 636–658 (1971).Article 

Google Scholar 
Hopson, J. A. Endothermy, small size, and the origin of mammalian reproduction. Am. Nat. 107, 446–452 (1973).Article 

Google Scholar 
Kielan-Jaworowska, Z., Cifelli, R. L. & Luo, Z. X. Mammals from the Age of Dinosaurs: Origins, Evolution, and Structure (Columbia University Press, New York, 2004).Book 

Google Scholar 
O’Leary, M. A. et al. The placental mammal ancestor and the post–K-Pg radiation of placentals. Science 339, 662–667 (2013).Article 
ADS 
PubMed 

Google Scholar 
Ji, Q., Luo, Z. X., Yuan, C. X. & Tabrum, A. R. A swimming mammaliaform from the Middle Jurassic and ecomorphological diversification of early mammals. Science 311, 1123–1127 (2006).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Luo, Z. X. & Wible, J. R. A Late Jurassic digging mammal and early mammalian diversification. Science 308, 103–107 (2005).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Luo, Z. X. et al. Evolutionary development in basal mammaliaforms as revealed by a docodontan. Science 347, 760–764 (2015).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Meng, Q. J. et al. An arboreal docodont from the Jurassic and mammaliaform ecological diversification. Science 347, 764–768 (2015).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Meng, Q. J. et al. New gliding mammaliaforms from the Jurassic. Nature 548, 291–296 (2017).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Luo, Z. X. et al. New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem. Nature 548, 326–329 (2017).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Hu, Y., Meng, J., Wang, Y. & Li, C. Large Mesozoic mammals fed on young dinosaurs. Nature 433, 149–152 (2005).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Krause, D. W. et al. First cranial remains of a gondwanatherian mammal reveal remarkable mosaicism. Nature 515, 512–517 (2014).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Krause, D. W. et al. Skeleton of a Cretaceous mammal from Madagascar reflects long-term insularity. Nature 581, 421–427 (2020).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Bonaparte, J. F. Approach to the significance of the Late Cretaceous mammals of South America. Berliner geowiss Abh E 13, 1–44 (1994).
Google Scholar 
Archibald, J. D. Timing and biogeography of the eutherian radiation: Fossils and molecules compared. Mol. Phylogenet. Evol. 28, 350–359 (2003).Article 

Google Scholar 
Hunter, J. P. & Janis, C. M. Spiny Norman in the Garden of Eden? Dispersal and early biogeography of Placentalia. J. Mammal. Evol. 13, 89–123 (2006).Article 

Google Scholar 
Wible, J. R., Rougier, G. W., Novacek, M. J. & Asher, R. J. Cretaceous eutherians and Laurasian origin for placental mammals near the K/T boundary. Nature 447, 1003–1006 (2007).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Rougier, G. W., Martinelli, A. G. & Forasiepi, A. M. Mesozoic Mammals from South America and Their Forerunners (Springer Nature, Berlin, 2021).Book 

Google Scholar 
Springer, M. S., Murphy, W. J., Eizirik, E. & O’Brien, S. J. Placental mammal diversification and the Cretaceous-Tertiary boundary. PNAS 100, 1056–1061 (2003).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Springer, M. S., Meredith, R. W., Janecka, J. E. & Murphy, W. J. The historical biogeography of Mammalia. Philos. Trans. R. Soc. B: Biol. Sci. 366, 2478–2502 (2011).Article 

Google Scholar 
Murphy, W. J. et al. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294, 2348–2351 (2001).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Madsen, O. et al. Parallel adaptive radiations in two major clades of placental mammals. Nature 409, 610–614 (2001).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Scally, M. et al. Molecular evidence for the major clades of placental mammals. J. Mammal. Evol. 8, 239–277 (2001).Article 

Google Scholar 
Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLOS Biol. 17, e3000494. (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Beck, R. M. & Baillie, C. Improvements in the fossil record may largely resolve current conflicts between morphological and molecular estimates of mammal phylogeny. Proc. R. Soc. B 285(1893), 20181632 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Upham, N. S., Esselstyn, J. A. & Jetz, W. Molecules and fossils tell distinct yet complementary stories of mammal diversification. Curr. Biol. 31, 4195–4206 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Prasad, G. V., Jaeger, J. J., Sahni, A., Gheerbrant, E. & Khajuria, C. K. Eutherian mammals from the upper Cretaceous (Maastrichtian) intertrappean beds of Naskal, Andhra Pradesh, India. J. Vert. Paleontol. 14, 260–277 (1994).Article 

Google Scholar 
Prasad, G. V. et al. First mammal evidence from the Late Cretaceous of India for biotic dispersal between India and Africa at the KT transition. CR Palevol. 9, 63–71 (2010).Article 

Google Scholar 
Sigogneau-Russell, D., Hooker, J. J. & Ensom, P. C. The oldest tribosphenic mammal from Laurasia (Purbeck Limestone Group, Berriasian, Cretaceous, UK) and its bearing on the ‘dual origin’of Tribosphenida. C. R. Acad. Sci. S II A Earth Planet. Sci. 333, 141–147 (2001).
Google Scholar 
Krause, D. W. Fossil molar from a Madagascan marsupial. Nature 412, 497–498 (2001).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Averianov, A. O., Archibald, J. D. & Martin, T. Placental nature of the alleged marsupial from the Cretaceous of Madagascar. Acta Palaeontol. Pol. 48, 149–151 (2003).
Google Scholar 
Rana, R. S. & Wilson, G. P. New Late Cretaceous mammals from the Intertrappean beds of Rangapur, India and paleobiogeographic framework. Acta Palaeontol. Pol. 48, 331–348 (2003).
Google Scholar 
Goswami, A. et al. A radiation of arboreal basal eutherian mammals beginning in the Late Cretaceous of India. PNAS 108, 16333–16338 (2011).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chimento, N., Agnolín, F. L. & Martinelli, A. G. Mesozoic mammals from South America: Implications for understanding early mammalian faunas from Gondwana. Contr. Mus. Argent. Cienc. Nat. 6, 199–209 (2016).
Google Scholar 
Castro, M. C. et al. A Late Cretaceous mammal from Brazil and the first radioisotopic age for the Bauru Group. R. Soc. Open Sci. 5, 180482 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Moyano-Paz, D. et al. The uppermost Cretaceous continental deposits at the southern end of Patagonia, the Chorrillo Formation case study (Austral-Magallanes Basin): Sedimentology, fossil content and regional implications. Cretaceous Res. 130, 105059 (2022).Article 

Google Scholar 
Novas, F. et al. Paleontological discoveries in the Chorrillo Formation (upper Campanian-lower Maastrichtian, Upper Cretaceous), Santa Cruz Province, Patagonia, Argentina. Rev. Mus Argent. Cienc. Nat. 21, 217–293 (2019).Article 

Google Scholar 
Muizon, C. D. Mayulestes ferox, a borhyaenoid (Metatheria, Mammalia) from the early Palaeocene of Bolivia. Phylogenetic and paleobiologic implications. Geodiversitas 20, 19–142 (1998).
Google Scholar 
Argot, C. Functional-adaptive analysis of the hindlimb anatomy of extant marsupials and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J. Morphol. 253, 76–108 (2002).Article 
PubMed 

Google Scholar 
Argot, C. Postcranial analysis of a carnivoran-like archaic ungulate: The case of Arctocyon primaevus (Arctocyonidae, Mammalia) from the late Paleocene of France. J. Mammal. Evol. 20, 83–114 (2013).Article 

Google Scholar 
Horovitz, I. Postcranial skeleton of Ukhaatherium nessovi (Eutheria, Mammalia) from the late Cretaceous of Mongolia. J. Vert. Paleontol. 23, 857–868 (2003).Article 

Google Scholar 
Chen, M. & Luo, Z. X. Postcranial skeleton of the Cretaceous mammal Akidolestes cifellii and its locomotor adaptations. J. Mammal. Evol. 20, 159–189 (2013).Article 

Google Scholar 
Jäger, K. R. K., Luo, Z. X. & Martin, T. Postcranial skeleton of Henkelotherium guimarotae (Cladotheria, Mammalia) and locomotor adaptation. J. Mammal. Evol. 27, 349–372 (2020).Article 

Google Scholar 
Jenkins, F. A. Jr. & Parrington, F. R. The postcranial skeletons of the Triassic mammals Eozostrodon, Megazostrodon and Erythrotherium. Philos. Trans. R. Soc. Lond. B Biol. Sci. 273, 387–431 (1976).Article 
ADS 
PubMed 

Google Scholar 
Krause, D. W. & Jenkins, F. A. The postcranial skeleton of North American multituberculates. Bull. Mus. Comp. Zool. 150, 199–246 (1983).
Google Scholar 
Hurum, J. H. & Kielan-Jaworowska, Z. Postcranial skeleton of a Cretaceous multituberculate mammal Catopsbaatar. Acta Palaeontol. Pol. 53, 545–566 (2008).Article 

Google Scholar 
Panciroli, E. et al. New species of mammaliaform and the cranium of Borealestes (Mammaliformes: Docodonta) from the Middle Jurassic of the British Isles. Zool. J. Linnean Soc. 192, 1323–1362 (2021).Article 

Google Scholar 
Candela, A. M. & Picasso, M. B. Functional anatomy of the limbs of Erethizontidae (Rodentia, Caviomorpha): Indicators of locomotor behavior in Miocene porcupines. J. Morphol. 269, 552–593 (2008).Article 
PubMed 

Google Scholar 
Abello, M. A. & Candela, A. M. Paleobiology of Argyrolagus (Marsupialia, Argyrolagidae): An astonishing case of bipedalism among South American mammals. J. Mammal. Evol. 27, 419–444 (2020).Article 

Google Scholar 
Kielan-Jaworowska, Z. & Gambaryan, P. P. Postcranial anatomy and habits of Asian multituberculate mammals. Foss. Strata 36, 1–92 (1994).Article 
Google Scholar 
Krause, D. W., Hoffmann, S. & Werning, S. First postcranial remains of Multituberculata (Allotheria, Mammalia) from Gondwana. Cretaceous Res. 80, 91–100 (2017).Article 
Google Scholar 
Chester, S. G. B., Sargis, E. J., Szalay, F. S., Archibald, J. D. & Averianov, A. O. Therian femora from the Late Cretaceous of Uzbekistan. Acta Palaeontol. Pol. 57, 53–64 (2012).Article 
Google Scholar 
Gambaryan, P. P. & Averianov, A. O. Femur of a morganucodontid mammal from the Middle Jurassic of Central Russia. Acta Palaeontol. Pol. 46, 99–112 (2001).
Google Scholar 
Martin, T. Postcranial anatomy of Haldanodon exspectatus (Mammalia, Docodonta) from the Late Jurassic (Kimmeridgian) of Portugal and its bearing for mammalian evolution. Zool. J. Linnean Soc. 145, 219–248 (2005).Article 
Google Scholar 
Luo, Z. X. & Wible, J. R. A Late Jurassic digging mammal and early mammalian diversification. Science 308, 103–107 (2005).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Rose, K. D. Postcranial skeleton of Eocene Leptictidae (Mammalia), and its implications for behavior and relationships. J. Vert. Paleontol. 19, 355–372 (1999).Article 
Google Scholar 
Shelley, S. L., Williamson, T. E. & Brusatte, S. L. The osteology of Periptychus carinidens: A robust, ungulate-like placental mammal (Mammalia: Periptychidae) from the Paleocene of North America. PLOS ONE 13, e0200132 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Chinsamy, A. & Hurum, J. H. Bone microstructure and growth patterns of early mammals. Acta Palaeontol. Pol. 51, 325–338 (2006).
Google Scholar 
Martinelli, A. G. et al. New cladotherian mammal from southern Chile and the evolution of mesungulatid meridiolestidans at the dusk of the Mesozoic era. Sci. Rep. 11, 7594 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhou, C. F., Bhullar, B. A. S., Neander, A. I., Martin, T. & Luo, Z. X. New Jurassic mammaliaform sheds light on early evolution of mammal-like hyoid bones. Science 365, 276–279 (2019).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Grossnickle, D. M., Smith, S. M. & Wilson, G. P. Untangling the multiple ecological radiations of early mammals. Trends Ecol. Evol. 34, 936–949 (201

OpenAI
Author: OpenAI

Don't Miss

Scientists provide most powerful proof but for 9th sun device planet

Scientists provide most powerful proof but for 9th sun device planet

A crew of researchers believes they’ve discovered essentially the most convincing
Fluids thicken on the velocity of sunshine: A brand new concept extends Einstein’s relativity to actual fluids

Fluids thicken on the velocity of sunshine: A brand new concept extends Einstein’s relativity to actual fluids

Credit score: CC0 Public area The idea of particular relativity is rife