Today: Sep 20, 2024

Carbon-to-nitrogen single-atom transmutation of azaarenes – Nature

Carbon-to-nitrogen single-atom transmutation of azaarenes – Nature
November 2, 2023



Boger, D. L. The variation a unmarried atom could make: synthesis and design on the chemistry–biology interface. J. Org. Chem. 82, 11961–11980 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Pupil 
Pennington, L. D., Collier, P. N. & Comer, E. Harnessing the essential nitrogen atom in chemical biology and drug discovery. Med. Chem. Res. (2023).Article 

Google Pupil 
Jurczyk, J. et al. Unmarried-atom common sense for heterocycle enhancing. Nat. Synth. 1, 352–364 (2022).Article 
ADS 
PubMed 
PubMed Central 

Google Pupil 
Schönherr, H. & Cernak, T. Profound methyl results in drug discovery and a decision for brand new C–H methylation reactions. Angew. Chem. Int. Ed. 52, 12256–12267 (2013).Article 

Google Pupil 
Chiodi, D. & Ishihara, Y. “Magic chloro”: profound results of the chlorine atom in drug discovery. J. Med. Chem. 66, 5305–5331 (2023).Article 
CAS 
PubMed 

Google Pupil 
Pennington, L. D. & Moustakas, D. T. The essential nitrogen atom: a flexible high-impact design component for multiparameter optimization. J. Med. Chem. 60, 3552–3579 (2017).Article 
CAS 
PubMed 

Google Pupil 
Vitaku, E., Smith, D. T. & Njardarson, J. T. Research of the structural range, substitution patterns, and frequency of nitrogen heterocycles amongst U.S. FDA licensed prescription drugs. J. Med. Chem. 57, 10257–10274 (2014).Article 
CAS 
PubMed 

Google Pupil 
Boss, C., Bolli, M. H. & Gatfield, J. From bosentan (Tracleer®) to macitentan (Opsumit®): the medicinal chemistry point of view. Bioorg. Med. Chem. Lett. 26, 3381–3394 (2016).Article 
CAS 
PubMed 

Google Pupil 
Eckhardt, M., Klein, T., Nar, H. & Thiemann, S. in A success Drug Discovery (eds Fischer, J. & Rotella, D. P.) 129–156 (Wiley, 2015); Okay., Sakamoto, T., Omori, Okay. & Kikkawa, Okay. in A success Drug Discovery (eds Fischer, J. & Rotella, D. P.) 61–86 (Wiley, 2015); Okay. R. et al. The significance of artificial chemistry within the pharmaceutical trade. Science 363, eaat0805 (2019).Article 
CAS 
PubMed 

Google Pupil 
Blakemore, D. C. et al. Natural synthesis supplies alternatives to turn out to be drug discovery. Nat. Chem. 10, 383–394 (2018).Article 
CAS 
PubMed 

Google Pupil 
Kelley, B. T., Walters, J. C. & Wengryniuk, S. E. Get entry to to numerous oxygen heterocycles by means of oxidative rearrangement of benzylic tertiary alcohols. Org. Lett. 18, 1896–1899 (2016).Article 
CAS 
PubMed 

Google Pupil 
Roque, J. B., Kuroda, Y., Göttemann, L. T. & Sarpong, R. Deconstructive diversification of cyclic amines. Nature 564, 244–248 (2018).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Pupil 
Siddiqi, Z., Wertjes, W. C. & Sarlah, D. Chemical similar of arene monooxygenases: dearomative synthesis of arene oxides and oxepines. J. Am. Chem. Soc. 142, 10125–10131 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Pupil 
Kennedy, S. H., Dherange, B. D., Berger, Okay. J. & Levin, M. D. Skeletal enhancing thru direct nitrogen deletion of secondary amines. Nature 593, 223–227 (2021).Article 
ADS 
CAS 
PubMed 

Google Pupil 
Lyu, H., Kevlishvili, I., Yu, X., Liu, P. & Dong, G. Boron insertion into alkyl ether bonds by means of zinc/nickel tandem catalysis. Science 372, 175–182 (2021).Article 
ADS 
CAS 
PubMed 

Google Pupil 
Morofuji, T., Inagawa, Okay. & Kano, N. Sequential ring-opening and ring-closing reactions for changing para-substituted pyridines into meta-substituted anilines. Org. Lett. 23, 6126–6130 (2021).Article 
CAS 
PubMed 

Google Pupil 
Reisenbauer, J. C., Inexperienced, O., Franchino, A., Finkelstein, P. & Morandi, B. Overdue-stage diversification of indole skeletons thru nitrogen atom insertion. Science 377, 1104–1109 (2022).Article 
ADS 
CAS 
PubMed 

Google Pupil 
Wang, J., Lu, H., He, Y., Jing, C. & Wei, H. Cobalt-catalyzed nitrogen atom insertion in arylcycloalkenes. J. Am. Chem. Soc. 144, 22433–22439 (2022).Article 
CAS 
PubMed 

Google Pupil 
Kamitani, M. et al. Unmarried–carbon atom switch to α,β-unsaturated amides from N-heterocyclic carbenes. Science 379, 484–488 (2023).Article 
ADS 
CAS 
PubMed 

Google Pupil 
Woo, J. et al. Scaffold hopping via internet photochemical carbon deletion of azaarenes. Science 376, 527–532 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Pupil 
Liu, S. & Cheng, X. Insertion of ammonia into alkenes to construct fragrant N-heterocycles. Nat. Commun. 13, 425 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Pupil 
Sundberg, R. J., Suter, S. R. & Brenner, M. Photolysis of 0-substituted aryl azides in diethylamine. Formation and autoxidation of 2-diethylamino-1H-azepine intermediates. J. Am. Chem. Soc. 94, 513–520 (1972).Article 
CAS 

Google Pupil 
Patel, S. C. & Burns, N. Z. Conversion of aryl azides to aminopyridines. J. Am. Chem. Soc. 144, 17797–17802 (2022).Article 
CAS 
PubMed 

Google Pupil 
Chen, P., Billett, B. A., Tsukamoto, T. & Dong, G. ‘Minimize and stitch’ transformations by means of transition-metal-catalyzed carbon–carbon bond activation. ACS Catal. 7, 1340–1360 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Pupil 
Boyle, B. T., Levy, J. N., de Lescure, L., Paton, R. S. & McNally, A. Halogenation of the 3-position of pyridines thru Zincke imine intermediates. Science 378, 773–779 (2022).Article 
ADS 
CAS 
PubMed 

Google Pupil 
Loenen, W. A. M., Dryden, D. T. F., Raleigh, E. A., Wilson, G. G. & Murray, N. E. Highlights of the DNA cutters: a brief historical past of the restriction enzymes. Nucleic Acids Res. 42, 3–19 (2014).Article 
CAS 
PubMed 

Google Pupil 
Fisher, T. J. & Dussault, P. H. Alkene ozonolysis. Tetrahedron 73, 4233–4258 (2017).Article 
CAS 

Google Pupil 
Smaligo, A. J. et al. Hydrodealkenylative C(sp3)–C(sp2) bond fragmentation. Science 364, 681–685 (2019).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Pupil 
Fremery, M. I. & Fields, E. Okay. Amozonolysis of cycloolefins. J. Org. Chem. 29, 2240–2243 (1964).Article 
CAS 

Google Pupil 
Willand-Charnley, R., Fisher, T. J., Johnson, B. M. & Dussault, P. H. Pyridine Is an organocatalyst for the reductive ozonolysis of alkenes. Org. Lett. 14, 2242–2245 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Pupil 
An, W. et al. Web site-selective C8-alkylation of quinoline N-oxides with maleimides below Rh(III) catalysis. J. Org. Chem. 86, 7579–7587 (2021).Article 
CAS 
PubMed 

Google Pupil 
Hwang, H., Kim, J., Jeong, J. & Chang, S. Regioselective advent of heteroatoms on the C-8 function of quinoline N-oxides: far flung C–H activation the usage of N-oxide as a stepping stone. J. Am. Chem. Soc. 136, 10770–10776 (2014).Article 
CAS 
PubMed 

Google Pupil 
Chen, X., Cui, X. & Wu, Y. C8-selective acylation of quinoline N-oxides with α-oxocarboxylic acids by means of palladium-catalyzed regioselective C–H bond activation. Org. Lett. 18, 3722–3725 (2016).Article 
CAS 
PubMed 

Google Pupil 
Albini, A. & Alpegiani, M. The photochemistry of the N-oxide serve as. Chem. Rev. 84, 43–71 (1984).Article 
CAS 

Google Pupil 
Spence, G. G., Taylor, E. C. & Buchardt, O. Photochemical reactions of azoxy compounds, nitrones, and fragrant amine N-oxides. Chem. Rev. 70, 231–265 (1970).Article 
CAS 

Google Pupil 
Hurlow, E. E. et al. Photorearrangement of [8]-2,6-pyridinophane N-oxide. J. Am. Chem. Soc. 142, 20717–20724 (2020).Article 
CAS 
PubMed 

Google Pupil 
Shieh, P., Hill, M. R., Zhang, W., Kristufek, S. L. & Johnson, J. A. Clip chemistry: numerous (bio)(macro)molecular and subject material serve as thru breaking covalent bonds. Chem. Rev. 121, 7059–7121 (2021).Article 
CAS 
PubMed 

Google Pupil 
Cochran, B. M. et al. Building of a business procedure to organize AMG 232 the usage of a inexperienced ozonolysis–Pinnick tandem transformation. J. Org. Chem. 84, 4763–4779 (2019).Article 
CAS 
PubMed 

Google Pupil 
Ragan, J. A. et al. Secure execution of a large-scale ozonolysis: preparation of the bisulfite adduct of 2-hydroxyindan-2-carboxaldehyde and its software in a reductive amination. Org. Procedure Res. Dev. 7, 155–160 (2003).Article 
CAS 

Google Pupil 
Van Ornum, S. G., Champeau, R. M. & Pariza, R. Ozonolysis packages in drug synthesis. Chem. Rev. 106, 2990–3001 (2006).Article 
PubMed 

Google Pupil 
Blair, H. A. Belumosudil: first approval. Medication 81, 1677–1682 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Pupil 
Malherbe, P. et al. Me-Talnetant and Osanetant engage inside of overlapping however no longer equivalent binding wallet within the human tachykinin neurokinin 3 receptor transmembrane domain names. Mol. Pharmacol. 73, 1736–1750 (2008).Article 
CAS 
PubMed 

Google Pupil 
Dexter, D. L. et al. Task of a unique 4-quinolinecarboxylic acid, NSC 368390 [6-fluoro-2-(2′-fluoro-1,1′-biphenyl-4-yl)-3-methyl-4-quinolinecarboxylic acid sodium salt], in opposition to experimental tumors.Most cancers Res. 45, 5563–5568 (1985).CAS 
PubMed 

Google Pupil 
Ruffoni, A., Hampton, C., Simonetti, M. & Leonori, D. Photoexcited nitroarenes for the oxidative cleavage of alkenes. Nature 610, 81–86 (2022).Article 
ADS 
CAS 
PubMed 

Google Pupil 
Smart, D. E. et al. Photoinduced oxygen switch the usage of nitroarenes for the anaerobic cleavage of alkenes. J. Am. Chem. Soc. 144, 15437–15442 (2022).Article 
CAS 
PubMed 

Google Pupil 
Griesbaum, Okay. et al. Ozonolysis of vinyl ethers in resolution and on polyethylene. J. Org. Chem. 55, 6153–6161 (1990).Article 
CAS 

Google Pupil 
Wojciechowski, B. J., Chiang, C. Y. & Kuczkowski, R. L. Ozonolysis of one,1-dimethoxyethene, 1,2-dimethoxyethene and vinyl acetate. J. Org. Chem. 55, 1120–1122 (1990).Article 
CAS 

Google Pupil 
Ko, S., Na, Y. & Chang, S. A unique chelation-assisted hydroesterification of alkenes by means of ruthenium catalysis. J. Am. Chem. Soc. 124, 750–751 (2002).Article 
CAS 
PubMed 

Google Pupil 
Gollnick, Okay. & Koegler, S. Thermal transformations of oxazole endoperoxides: rearrangements, fragmentations and methanol additions. Tetrahedron Lett. 29, 1007–1010 (1988).Article 
CAS 

Google Pupil 
Gobec, S. et al. in Science of Synthesis (eds Yamamoto, Y. & Shinkai, I.) 573–750 (Thieme, 2004); C., Schäfer, A., Huy, P. H. & Hilt, G. Formamide-catalyzed nucleophilic substitutions: mechanistic perception and clarification of catalytic task. ACS Catal. 10, 11567–11577 (2020).Article 
CAS 

Google Pupil 

OpenAI
Author: OpenAI

Don't Miss

It’s the Human Frame’s Handiest Disposable Organ. It Makes Us Who We Are.

It’s the Human Frame’s Handiest Disposable Organ. It Makes Us Who We Are.

We’re accrued right here nowadays to have a good time the lifetime
Love lighting fixtures up your mind otherwise relying on who you might be excited about

Love lighting fixtures up your mind otherwise relying on who you might be excited about

(Credit score: Anna Nikonorova/Shutterstock) ESPOO, Finland — Love makes the sector move