Coyne, J. A. & Orr, H. A. Speciation (Sinauer, 2004).Orr, H. A., Masly, J. P. & Presgraves, D. C. Speciation genes. Curr. Opin. Genet. Dev. 14, 675–679 (2004).Article
CAS
PubMed
Google Student
Johnson, N. A. Hybrid incompatibility genes: remnants of a genomic battlefield? Traits Genet. 26, 317–325 (2010).Article
CAS
PubMed
Google Student
Miyanari, Y., Ziegler-Birling, C. & Torres-Padilla, M.-E. Reside visualization of chromatin dynamics with fluorescent TALEs. Nat. Struct. Mol. Biol. 20, 1321–1324 (2013).Article
CAS
PubMed
Google Student
Narayanswami, S. et al. Cytological and molecular characterization of centromeres in Mus domesticus and Mus spretus. Mamm. Genome 2, 186–194 (1992).Article
CAS
PubMed
Google Student
Wong, A. Ok. C., Biddle, F. G. & Rattner, J. B. The chromosomal distribution of the main and minor satellite tv for pc isn’t conserved within the genus Mus. Chromosoma 99, 190–195 (1990).Article
CAS
PubMed
Google Student
Hirano, T. Condensin-based chromosome group from micro organism to vertebrates. Mobile 164, 847–857 (2016).Article
CAS
PubMed
Google Student
Hoencamp, C. et al. 3-D genomics around the tree of existence unearths condensin II as a determinant of structure sort. Science 372, 984–989 (2021).Article
CAS
PubMed
PubMed Central
Google Student
Mihola, O., Trachtulec, Z., Vlcek, C., Schimenti, J. C. & Forejt, J. A mouse speciation gene encodes a meiotic histone H3 methyltransferase. Science 323, 373–375 (2009).Article
ADS
CAS
PubMed
Google Student
Brideau, N. J. et al. Two Dobzhansky-Muller genes engage to reason hybrid lethality in Drosophila. Science 314, 1292–1295 (2006).Article
ADS
CAS
PubMed
Google Student
Phadnis, N. et al. An very important mobile cycle legislation gene reasons hybrid inviability in Drosophila. Science 350, 1552–1555 (2015).Article
ADS
CAS
PubMed
PubMed Central
Google Student
Suzuki, T. A. & Nachman, M. W. Speciation and lowered hybrid feminine fertility in area mice. Evolution 69, 2468–2481 (2015).Article
PubMed
PubMed Central
Google Student
Sturtevant, A. H. Genetic research on Drosophila simulans. I. Creation. Hybrids with Drosophila melanogaster. Genetics 5, 488–500 (1920).Article
CAS
PubMed
PubMed Central
Google Student
Chiang, T., Schultz, R. M. & Lampson, M. A. Meiotic origins of maternal age-related aneuploidy. Biol. Reprod. 86, 1–7 (2012).Article
PubMed
Google Student
Kitajima, T. S. Mechanisms of kinetochore-microtubule attachment mistakes in mammalian oocytes. Dev. Enlargement Vary. 60, 33–43 (2018).Article
PubMed
Google Student
Nagaoka, S. I., Hassold, T. J. & Hunt, P. A. Human aneuploidy: mechanisms and new insights into an age-old downside. Nat. Rev. Genet. 13, 493–504 (2012).Article
CAS
PubMed
PubMed Central
Google Student
Thomas, C., Cavazza, T. & Schuh, M. Aneuploidy in human eggs: contributions of the meiotic spindle. Biochem. Soc. Trans. 49, 107–118 (2021).Article
CAS
PubMed
PubMed Central
Google Student
Sebestova, J., Danylevska, A., Novakova, L., Kubelka, M. & Anger, M. Loss of reaction to unaligned chromosomes in mammalian feminine gametes. Mobile Cycle 11, 3011–3018 (2012).Article
CAS
PubMed
PubMed Central
Google Student
Asakawa, T., Ishikawa, M., Shimizu, T. & Dukelow, W. R. The chromosomal normality of in vitro-fertilized rabbit oocytes. Biol. Reprod. 38, 292–295 (1988).Article
CAS
PubMed
Google Student
Nicodemo, D. et al. Frequency of aneuploidy in in vitro-matured MII oocytes and corresponding first polar our bodies in two dairy farm animals (Bos taurus) breeds as decided by way of dual-color fluorescent in situ hybridization. Theriogenology 73, 523–529 (2010).Article
CAS
PubMed
Google Student
Vozdová, M. et al. Frequency of aneuploidy in pig oocytes matured in vitro and of the corresponding first polar our bodies detected by way of fluorescent in situ hybridization. Theriogenology 56, 771–776 (2001).Article
PubMed
Google Student
Koehler, Ok. E., Schrump, S. E., Cherry, J. P., Hassold, T. J. & Hunt, P. A. Close to-human aneuploidy ranges in feminine mice with homeologous chromosomes. Curr. Biol. 16, R579–R580 (2006).Article
CAS
PubMed
Google Student
Reichmann, J. et al. Twin-spindle formation in zygotes helps to keep parental genomes aside in early mammalian embryos. Science 361, 189–193 (2018).Article
ADS
CAS
PubMed
Google Student
Hirota, T., Gerlich, D., Koch, B., Ellenberg, J. & Peters, J.-M. Distinct purposes of condensin I and II in mitotic chromosome meeting. J. Mobile Sci. 117, 6435–6445 (2004).Article
CAS
PubMed
Google Student
Ono, T. et al. Differential contributions of condensin I and condensin II to mitotic chromosome structure in vertebrate cells. Mobile 115, 109–121 (2003).Article
CAS
PubMed
Google Student
Ono, T., Fang, Y., Spector, D. L. & Hirano, T. Spatial and temporal legislation of condensins I and II in mitotic chromosome meeting in human cells. Mol. Biol. Mobile 15, 3296–3308 (2004).Article
CAS
PubMed
PubMed Central
Google Student
Ono, T., Yamashita, D. & Hirano, T. Condensin II initiates sister chromatid answer all the way through S section. J. Mobile Biol. 200, 429–441 (2013).Article
CAS
PubMed
PubMed Central
Google Student
Lee, J., Ogushi, S., Saitou, M. & Hirano, T. Condensins I and II are very important for development of bivalent chromosomes in mouse oocytes. Mol. Biol. Mobile 22, 3465–3477 (2011).Article
CAS
PubMed
PubMed Central
Google Student
Houlard, M. et al. Condensin confers the longitudinal stress of chromosomes. Nat. Mobile Biol. 17, 771–781 (2015).Article
CAS
PubMed
PubMed Central
Google Student
Abe, S. et al. The preliminary section of chromosome condensation calls for Cdk1-mediated phosphorylation of the CAP-D3 subunit of condensin II. Genes Dev. 25, 863–874 (2011).Article
CAS
PubMed
PubMed Central
Google Student
Choi, T. et al. Activation of p34cdc2 protein kinase task in meiotic and mitotic mobile cycles in mouse oocytes and embryos. Building 113, 789–795 (1991).Article
CAS
PubMed
Google Student
Davydenko, O., Schultz, R. M. & Lampson, M. A. Higher CDK1 task determines the timing of kinetochore-microtubule attachments in meiosis I. J. Mobile Biol. 202, 221–229 (2013).Article
CAS
PubMed
PubMed Central
Google Student
Yoshida, S., Kaido, M. & Kitajima, T. S. Inherent instability of right kind kinetochore-microtubule attachments all the way through meiosis I in oocytes. Dev. Mobile 33, 589–602 (2015).Article
CAS
PubMed
Google Student
Pommier, Y., Nussenzweig, A., Takeda, S. & Austin, C. Human topoisomerases and their roles in genome balance and group. Nat. Rev. Mol. Mobile Biol. 23, 407–427 (2022).Article
CAS
PubMed
PubMed Central
Google Student
Zhang, J. et al. Topoisomerase II disorder reasons metaphase I arrest by way of activating Aurora B, SAC and MPF and forestalls PB1 abscission in mouse oocytes. Biol. Reprod. 106, 900–909 (2022).Article
PubMed
Google Student
Li, X.-M. et al. DNA topoisomerase II is dispensable for oocyte meiotic resumption however is very important for meiotic chromosome condensation and separation in mice. Biol. Reprod. 89, 118 (2013).Article
PubMed
Google Student
Arora, U. P., Charlebois, C., Lawal, R. A. & Dumont, B. L. Inhabitants and subspecies variety at mouse centromere satellites. BMC Genom. 22, 279 (2021).Article
CAS
Google Student
Yamashita, D. et al. MCPH1 regulates chromosome condensation and shaping as a composite modulator of condensin II. J. Mobile Biol. 194, 841–854 (2011).Article
CAS
PubMed
PubMed Central
Google Student
Houlard, M. et al. MCPH1 inhibits condensin II all the way through interphase by way of regulating its SMC2-kleisin interface. eLife 10, e73348 (2021).Article
CAS
PubMed
PubMed Central
Google Student
Hale, D. W., Washburn, L. L. & Eicher, E. M. Meiotic abnormalities in hybrid mice of the C57BL/6J x Mus spretus move recommend a cytogenetic foundation for Haldane’s rule of hybrid sterility. Cytogenet. Mobile Genet. 63, 221–234 (1993).Article
CAS
PubMed
Google Student
Davies, B. et al. Changing the binding homes of PRDM9 partly restores fertility around the species boundary. Mol. Biol. Evol. 38, 5555–5562 (2021).Article
CAS
PubMed
PubMed Central
Google Student
Dejager, L., Libert, C. & Montagutelli, X. Thirty years of Mus spretus: a promising long run. Traits Genet. 25, 234–241 (2009).Article
CAS
PubMed
Google Student
Probst, A. V. et al. A strand-specific burst in transcription of pericentric satellites is needed for chromocenter formation and early mouse building. Dev. Mobile 19, 625–638 (2010).Article
CAS
PubMed
Google Student
Burton, A. et al. Heterochromatin status quo all the way through early mammalian building is regulated by way of pericentromeric RNA and characterised by way of non-repressive H3K9me3. Nat. Mobile Biol. 22, 767–778 (2020).Article
CAS
PubMed
PubMed Central
Google Student
Terakawa, T. et al. The condensin advanced is a mechanochemical motor that translocates alongside DNA. Science 358, 672–676 (2017).Article
ADS
CAS
PubMed
PubMed Central
Google Student
Kong, M. et al. Human condensin I and II force intensive ATP-dependent compaction of nucleosome-bound DNA. Mol. Mobile 79, 99–114 (2020).Article
CAS
PubMed
PubMed Central
Google Student
Kinoshita, Ok., Kobayashi, T. J. & Hirano, T. Balancing acts of 2 HEAT subunits of condensin I toughen dynamic meeting of chromosome axes. Dev. Mobile 33, 94–106 (2015).Article
CAS
PubMed
Google Student
Hsieh, T. Knotting of the round duplex DNA by way of sort II DNA topoisomerase from Drosophila melanogaster. J. Biol. Chem. 258, 8413–8420 (1983).Article
CAS
PubMed
Google Student
Haase, J., Chen, R., Bonner, M. Ok., Jenkins, L. M. M. & Kelly, A. E. The TFIIH advanced is needed to determine and handle mitotic chromosome construction. eLife (2022).Choppakatla, P. et al. Linker histone H1.8 inhibits chromatin binding of condensins and DNA topoisomerase II to track chromosome period and individualization. eLife 10, e68918 (2021).Article
CAS
PubMed
PubMed Central
Google Student
Akera, T., Trimm, E. & Lampson, M. A. Molecular methods of meiotic dishonest by way of egocentric centromeres. Mobile 178, 1132–1144 (2019).Article
CAS
PubMed
PubMed Central
Google Student
Henikoff, S., Ahmad, Ok. & Malik, H. S. The centromere paradox: strong inheritance with swiftly evolving DNA. Science 293, 1098–1102 (2001).Article
CAS
PubMed
Google Student
King, T. D. et al. Recurrent losses and speedy evolution of the condensin II advanced in bugs. Mol. Biol. Evol. 36, 2195–2204 (2019).Article
CAS
PubMed
PubMed Central
Google Student
Phadnis, N. & Orr, H. A. A unmarried gene reasons each male sterility and segregation distortion in Drosophila hybrids. Science 323, 376–379 (2009).Article
ADS
CAS
PubMed
Google Student
Iwata-Otsubo, A. et al. Expanded satellite tv for pc repeats enlarge a discrete CENP-A nucleosome meeting website online on chromosomes that force in feminine meiosis. Curr. Biol. 27, 2365–2373 (2017).Article
CAS
PubMed
PubMed Central
Google Student
Stein, P. & Schindler, Ok. Mouse oocyte microinjection, maturation and ploidy overview. J. Vis. Exp. (2011).Igarashi, H., Knott, J. G., Schultz, R. M. & Williams, C. J. Alterations of PLCβ1 in mouse eggs exchange calcium oscillatory conduct following fertilization. Dev. Biol. 312, 321–330 (2007).Article
CAS
PubMed
PubMed Central
Google Student
Ostromyshenskiĭ, D. I., Kuznetsova, I. S., Golinishchev, F. N., Malikov, V. G. & Podgornaia, O. I. Satellite tv for pc DNA as a phylogenetic marker: case find out about of 3 genera of the Murinae subfamily. Tsitologiia 53, 564–571 (2011).PubMed
Google Student
Tada, Ok., Susumu, H., Sakuno, T. & Watanabe, Y. Condensin affiliation with histone H2A shapes mitotic chromosomes. Nature 474, 477–483 (2011).Article
CAS
PubMed
Google Student
Samoshkin, A. et al. Human condensin serve as is very important for centromeric chromatin meeting and correct sister kinetochore orientation. PLoS ONE 4, e6831 (2009).Article
ADS
PubMed
PubMed Central
Google Student
Clift, D. et al. A technique for the extreme and speedy degradation of endogenous proteins. Mobile 171, 1692–1706 (2017).Article
CAS
PubMed
PubMed Central
Google Student
Shintomi, Ok. & Hirano, T. Guiding purposes of the C-terminal area of topoisomerase IIα advance mitotic chromosome meeting. Nat. Commun. 12, 2917 (2021).Article
ADS
CAS
PubMed
PubMed Central
Google Student