Brown, T. et al. in Advances in Neural Knowledge Processing Methods Vol. 33 (eds Larochelle, H. et al.) 1877–1901 (Curran Pals, 2020).Thoppilan, R. et al. LaMDA: language fashions for conversation programs. Preprint at (2022).Touvron, H. et al. LLaMA: open and environment friendly basis language fashions. Preprint at (2023).Hoffmann, J. et al. Coaching compute-optimal huge language fashions. In Advances in Neural Knowledge Processing Methods 30016–30030 (NeurIPS, 2022).Chowdhery, A. et al. PaLM: scaling language modeling with pathways. J. Mach. Be told. Res. 24, 1–113 (2022).Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein construction with a language type. Science 379, 1123–1130 (2023).Article
ADS
MathSciNet
CAS
PubMed
Google Student
Luo, R. et al. BioGPT: generative pre-trained transformer for biomedical textual content era and mining. Transient Bioinform. 23, bbac409 (2022).Article
PubMed
Google Student
Irwin, R., Dimitriadis, S., He, J. & Bjerrum, E. J. Chemformer: a pre-trained transformer for computational chemistry. Mach. Be told. Sci. Technol. 3, 015022 (2022).Article
ADS
Google Student
Kim, H., Na, J. & Lee, W. B. Generative chemical transformer: neural gadget finding out of molecular geometric constructions from chemical language by way of consideration. J. Chem. Inf. Type. 61, 5804–5814 (2021).Article
CAS
PubMed
Google Student
Jablonka, Okay. M., Schwaller, P., Ortega-Guerrero, A. & Smit, B. Leveraging huge language fashions for predictive chemistry. Preprint at (2023).Xu, F. F., Alon, U., Neubig, G. & Hellendoorn, V. J. A scientific analysis of huge language fashions of code. In Proc. sixth ACM SIGPLAN World Symposium on System Programming 1–10 (ACM, 2022).Nijkamp, E. et al. CodeGen: an open huge language type for code with multi-turn program synthesis. In Proc. eleventh World Convention on Studying Representations (ICLR, 2022).Kaplan, J. et al. Scaling rules for neural language fashions. Preprint at (2020).OpenAI. GPT-4 Technical File (OpenAI, 2023).Ziegler, D. M. et al. Superb-tuning language fashions from human personal tastes. Preprint at (2019).Ouyang, L. et al. Coaching language fashions to observe directions with human comments. In Advances in Neural Knowledge Processing Methods 27730–27744 (NeurIPS, 2022).Granda, J. M., Donina, L., Dragone, V., Lengthy, D.-L. & Cronin, L. Controlling an natural synthesis robotic with gadget finding out to seek for new reactivity. Nature 559, 377–381 (2018).Article
ADS
CAS
PubMed
PubMed Central
Google Student
Caramelli, D. et al. Finding new chemistry with an self reliant robot platform pushed by way of a reactivity-seeking neural community. ACS Cent. Sci. 7, 1821–1830 (2021).Article
CAS
PubMed
PubMed Central
Google Student
Angello, N. H. et al. Closed-loop optimization of common response stipulations for heteroaryl Suzuki–Miyaura coupling. Science 378, 399–405 (2022).Article
ADS
MathSciNet
CAS
PubMed
Google Student
Adamo, A. et al. On-demand continuous-flow manufacturing of prescription drugs in a compact, reconfigurable device. Science 352, 61–67 (2016).Article
ADS
CAS
PubMed
Google Student
Coley, C. W. et al. A robot platform for circulation synthesis of natural compounds knowledgeable by way of AI making plans. Science 365, eaax1566 (2019).Article
CAS
PubMed
Google Student
Burger, B. et al. A cellular robot chemist. Nature 583, 237–241 (2020).Article
ADS
CAS
PubMed
Google Student
Auto-GPT: the guts of the open-source agent ecosystem. GitHub (2023).BabyAGI. GitHub (2023).Chase, H. LangChain. GitHub (2023).Bran, A. M., Cox, S., White, A. D. & Schwaller, P. ChemCrow: augmenting large-language fashions with chemistry equipment. Preprint at (2023).Liu, P. et al. Pre-train, advised, and are expecting: a scientific survey of prompting strategies in herbal language processing. ACM Comput. Surv. 55, 195 (2021).Bai, Y. et al. Constitutional AI: harmlessness from AI comments. Preprint at (2022).Falcon LLM. TII (2023).Open LLM Leaderboard. Hugging Face (2023).Ji, Z. et al. Survey of hallucination in herbal language era. ACM Comput. Surv. 55, 248 (2023).Article
Google Student
Reaxys (2023).SciFinder (2023).Yao, S. et al. ReAct: synergizing reasoning and performing in language fashions. In Proc.eleventh World Convention on Studying Representations (ICLR, 2022).Wei, J. et al. Chain-of-thought prompting elicits reasoning in huge language fashions. In Advances in Neural Knowledge Processing Methods 24824–24837 (NeurIPS, 2022).Lengthy, J. Huge language type guided tree-of-thought. Preprint at (2023).Opentrons Python Protocol API. Opentrons (2023).Tu, Z. et al. Approximate nearest neighbor seek and light-weight dense vector reranking in multi-stage retrieval architectures. In Proc. 2020 ACM SIGIR on World Convention on Idea of Knowledge Retrieval 97–100 (ACM, 2020).Lin, J. et al. Pyserini: a python toolkit for reproducible data retrieval analysis with sparse and dense representations. In Proc. forty fourth World ACM SIGIR Convention on Analysis and Construction in Knowledge Retrieval 2356–2362 (ACM, 2021).Qadrud-Din, J. et al. Transformer primarily based language fashions for equivalent textual content retrieval and score. Preprint at (2020).Paper QA. GitHub (2023).Robertson, S. & Zaragoza, H. The probabilistic relevance framework: BM25 and past. Discovered. Traits Inf. Retrieval 3, 333–389 (2009).Article
Google Student
Knowledge Mining. Mining of Large Datasets (Cambridge Univ., 2011).Johnson, J., Douze, M. & Jegou, H. Billion-scale similarity seek with GPUs. IEEE Trans. Large Knowledge 7, 535–547 (2021).Article
Google Student
Vechtomova, O. & Wang, Y. A find out about of the impact of time period proximity on question growth. J. Inf. Sci. 32, 324–333 (2006).Article
Google Student
Operating experiments. Emerald Cloud Lab (2023).Sanchez-Garcia, R. et al. CoPriNet: graph neural networks supply correct and fast compound worth prediction for molecule prioritisation. Virtual Discov. 2, 103–111 (2023).Article
Google Student
Bubeck, S. et al. Sparks of synthetic common intelligence: early experiments with GPT-4. Preprint at (2023).Ramos, M. C., Michtavy, S. S., Porosoff, M. D. & White, A. D. Bayesian optimization of catalysts with in-context finding out. Preprint at (2023).Perera, D. et al. A platform for automatic nanomole-scale response screening and micromole-scale synthesis in circulation. Science 359, 429–434 (2018).Article
ADS
CAS
PubMed
Google Student
Ahneman, D. T., Estrada, J. G., Lin, S., Dreher, S. D. & Doyle, A. G. Predicting response efficiency in C–N cross-coupling the usage of gadget finding out. Science 360, 186–190 (2018).Article
ADS
CAS
PubMed
Google Student
Hickman, R. et al. Atlas: a mind for self-driving laboratories. Preprint at (2023).